
Eugene Tsyrklevich has an extensive security background
ranging from designing and implementing Host Intrusion
Prevention Systems to training people in research,
corporate, and military environments. Eugene has
presented his research at a number of security conferences
including Usenix Security, BlackHat Europe and BlackHat
USA. Eugene holds both a Bachelor and a Masters degree in
Computer Science from the University of California,
San Diego.

Ozone HIPS: Unbreakable Windows

Windows is the number one target on the Internet today. It takes

less than 5 minutes for an unpatched Windows machine,

connected to the Internet, to get owned. Yet the most prevalent

security practices still consist of running anti-viruses and

constant patching.

This presentation introduces a new tool, called Ozone, that is

designed to protect against most of the commonly exploited

attack vectors. To protect against the most common of these,

buffer overflows, Ozone uses an address space randomization

technique. In addition, Ozone runs all processes in a sandbox that

severely limits what a compromised process is allowed to do.

Finally, Ozone protects itself and the underlying operating system

against further attacks.

Eugene Tsyrklevich b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Ozone HIPS: Unbreakable
Windows

Eugene Tsyrklevich

Agenda

Memory Protection

Process Protection

System/OS Protection

Ozone’s self protection

Demonstration

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Attack Scenario – Stage 1

The first step in a typical attack involves

gaining remote access to a system

Usually achieved by means of a remote

buffer overflow

Solution: buffer overflow protection +

process sandboxing

Attack Scenario – Stage 2

Once remote access is gained, attackers usually

clean the logs, trojan the system and install rootkits

Achieved by tampering with system logs and

binaries and by loading unauthorized malicious

code

Solution: disallow tampering with system resources

and/or disallow loading of unauthorized code

digital self defense

Memory Protection

The memory protection layer is responsible
for guarding against attacks that hijack
execution by corrupting memory

These include

Buffer overflows (stack and heap based)

Format bugs

Function pointer overwrites

Other data corruption

Exploiting Memory Bugs

The majority of memory corruption attacks

involve

1. Injecting a malicious payload

2. Transferring control to it

We cannot prevent payload injection but

can prevent attackers from gaining control

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Stopping Memory Exploits

Writable page execution (Entercept)

Canary / compiler based solutions

(StackGuard, ProPolice)

Address Space Randomization (PaX, Ozone)

Many, many others

Address Space Randomization

Address Space Randomization involves
randomizing the base addresses of various
data structures, such as stack, heap, libraries,
code segment, etc

As the address space layout of each instance
of an application is different from the next,
all exploits depending on static addresses
will stop working

digital self defense

ASR Illustration

ASR Implementation Details

Stack and heap randomization

Has 0% overhead

Provides ~16 bits of entropy

Does not break any sane applications

Runtime DLL randomization

Has an upfront CPU cost (time to relocate) plus some
memory overhead (DLL code is not shared any longer)

Provides ~14 bits of entropy

Might break certain apps

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

ASR Implementation
Challenges

Win32 loader prevents kernel32.dll (and user32.dll)
from being rebased because BaseProcessEntry
address is copied from one process to another
during CreateProcess()

BaseProcessEntry() address can be adjusted at
runtime and the loader can be tricked

Ntdll.dll is loaded at bootup time and then mapped
into each process

Ntdll.dll can be statically rebased. Runtime
solutions are being investigated.

ASR Implementation
Challenges (2)

As an optimization, Win32 compilers do not
include relocation information for executables.

This means that .text segments cannot easily be
relocated.

Possible solutions:

Force compilers to include relocation info

Relocate and rewrite the binary manually

ASR turns buffer overflows into Denial of Service
which might not be acceptable for all applications

digital self defense

ASR Conclusion

ASR involves randomizing the base addresses of all
memory regions, including stack, heap, DLL and
executable

ASR does not provide a 100% guarantee against all
memory based attacks

ASR can provide additional security with little
overhead

ASK stack and heap randomization (at least) should
be included in a stock OS

Process Protection

To provide further protection against a variety of
attack vectors, the process protection layer is
responsible for executing all processes inside the
sandbox

The sandbox enforces process rules from kernel
mode and cannot be bypassed

The sandbox mediates access to all system
resources (~20 types), which a process might need
to access

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Policy Engine

Sandboxes are described by policy files

A policy file is a collection of rules specified

in a text file

Policy Hierarchy

digital self defense

Policy Example

run ITunes & Skype concurrently with SoftICE

file_all: name eq "\Device\Siwvid" then deny

registry_read: name match “**\secret” then quietdeny

dll_load: log

driver_load: deny

process_execute: name eq “ok.exe” then permit

network_tcpconnect: name eq “127.0.0.1” then permit

act as a personal firewall

network_all: ask

Policy Types

Deny all policy

process_execute: name eq “ok.exe” then permit

process_execute: deny

Allow all policy

process_execute: name eq “bad.exe” then deny

process_execute: permit

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Policy Creation

Manual

Suitable for allow all policies where only known

malicious resources are denied access to

As the name implies, an administrator manually specifies

all the necessary rules

Automatic

Suitable for deny all policies where only a known good

subset of resources is allowed access to

Automatically generated by monitoring process behavior

Process Protection Challenges

Svchost.exe/dllhost.exe host applications

IE policy: protection_all: off

Finally, spot 2 issues in the screenshot below of

Acrobat.exe’s loaded DLL list that make sandboxing on

Windows such a challenging task..

digital self defense

Protection Protection
Conclusion

All processes are executed inside a sandbox,
which is enforced from kernel mode and
cannot be bypassed

Sandbox mechanism controls access to all
named system resources

Sandboxes are described using text files
which list access rules to all specified
resources

System Protection

The system protection layer is designed to harden
the underlying operating system

This is achieved by protecting the integrity of static
and dynamic core OS binaries & registry keys

In addition, malicious or potentially exploitable
features such as debugging, DOS16 emulation,
keyboard loggers and kernel driver loading can be
disallowed

Finally, access to removable media can also be
restricted

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

System Protection Policy
Example

protection_debugging: on

protection_dos16: on

protection_keyboard: on

time_change: log

token_modify: permit

media_access: readonly

System Protection Challenges

Legitimate applications require loading of

kernel code drivers

Windows security patches regularly

overwrite/update core OS resources

digital self defense

System Protection Conclusion

The system protection layer is responsible for
protecting the underlying operating system

This is achieved by protecting the core file
and registry resources

In addition, dangerous functionality such as
debugging, dos16 emulation, keyboard
logging and removable media access, can all
be restricted

Self Protection

As the name states, the self protection layer is
responsible for protecting Ozone itself

To achieve this, all the core components such as
userland services and kernel mode drivers cannot be
stopped or unloaded

In addition, kernel code drivers cannot be loaded to
prevent further attacks

All the security rules are enforced from the kernel
mode and cannot be bypassed by userland processes

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Conclusions

Modern systems are subject to a number of

powerful attacks which no single

mechanism/technique can prevent

To address this issue, Ozone was designed with a

“security in depth” principle in mind

Ozone consists of multiple “layers” designed to

stop a variety of attack vectors ranging from remote

memory based attacks to local privilege escalation

Conclusions (2)

The memory layer uses an ASR technique to

prevent memory based attacks

The protection layer uses a sandbox mechanism to

protect against a variety of attack vectors

The system protection layer hardens the underlying

operating system

Ozone is also designed to protect itself against

malicious behaviour

digital self defense

Demo

Thanks

Any questions?

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

